
Beyond Word Embeddings: Dense Representations for Multi-modal Data

Luis Armona1,2, José P. González-Brenes,2∗ Ralph Edezhath2∗
1Department of Economics, Stanford University,

2Chegg, Inc.
larmona@stanford.edu, {redezhath, jgonzalez}@chegg.com

Abstract

Methods that calculate dense vector representations for text
have proven to be very successful for knowledge represen-
tation. We study how to estimate dense representations for
multi-modal data (e.g., text, continuous, categorical). We
propose Feat2Vec as a novel model that supports super-
vised learning when explicit labels are available, and self-
supervised learning when there are no labels. Feat2Vec calcu-
lates embeddings for data with multiple feature types, enforc-
ing that all embeddings exist in a common space. We believe
that we are the first to propose a method for learning self-
supervised embeddings that leverage the structure of multiple
feature types. Our experiments suggest that Feat2Vec outper-
forms previously published methods, and that it may be use-
ful for avoiding the cold-start problem.

1 Introduction
Informally, in machine learning a dense representation, or
embedding of a vector ~x ∈ Rn is another vector ~β ∈ Rr that
has much lower dimensionality (r � n) than the original
representation. In general, we consider two kind of models
that produce embeddings: (i) supervised methods, like ma-
trix factorization, calculate embeddings that are highly tuned
to a prediction task. For example, in the Nextflix challenge,
movie identifiers are embedded to predict user ratings. On
the other hand, (ii) self-supervised methods (sometimes re-
ferred to as unsupervised methods) are not tuned for the
prediction task they are ultimately used for. For example,
word embedding algorithms such as Word2Vec (Mikolov
et al. 2013b) are self-supervised. These algorithms are typi-
cally evaluated by analogy solving, or sentiment analysis (Le
and Mikolov 2014), even though their loss functions are not
tuned for either of these tasks.

Throughout this paper, we refer to any data that has dif-
ferent types of information as multi-modal. We propose
Feat2Vec as a novel method that embeds multi-modal data,
such as text, images, numerical or categorical data, in a com-
mon vector space—for both supervised and self-supervised
scenarios. We believe that this is the first self-supervised al-
gorithm that is able to calculate embeddings from data with
multiple feature types. Consider the non-trivial work that

∗Equal contribution
Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

was required to extend a model like Word2Vec to support
additional features. The authors of the seminal Doc2Vec (Le
and Mikolov 2014) paper needed to design both a new neural
network and a new sampling strategy to add a single feature
(document ID). Feat2Vec is a general method that allows
calculating embeddings for any number of features.

2 Feat2Vec
In this section we describe how Feat2Vec learns embed-
dings of feature groups.

2.1 Model
Feat2Vec predicts a target output ỹ from each observation
~x, which is multi-modal data that can be interpreted as a list
of feature groups ~gi:

~x = 〈~g1, ~g2, . . . , ~gn〉 = 〈~x~κ1
, ~x~κ2

, . . . , ~x~κn
〉 (1)

For notational convenience, we also refer to the i-th feature
group as ~x~κi

. In other words, each observation is constructed
from a partition of raw features specified by ~κ. Examples of
how to group features include “text” from individual words,
or an “image” from individual pixels. We define an entity to
be a particular value or realization of a feature group.

We define our model for a target y as follows:

ỹ(~x, ~φφφ, ~θθθ) = ω

(n∑
i=1

n∑
j=i

group i
embedding

φi(~x~κi
;~θi) ·

group j
embedding

φj(~x~κj
; ~θj)

)
(2)

The number of dimensions di of each feature group may
vary, but all of them are embedded to the same space via
their feature extraction function φi : Rdi → Rr. These func-
tions learn how to transform each input (feature group) into
an r-dimensional embedding of length r. We only allow a
feature extraction function φi to act on the features of gi; and
feature groups interact with each other only via the output of
φi. We denote the parameters of the extraction function φi
as ~θi. ω is an activation (link) function. Intuitively, the dot
product (·) returns a scalar that measures the (dis)similarity
between the embeddings of the feature groups.

A simple implementation of φi is a linear fully-connected
layer, where the output of the r-th entry is:

φi
(
~xi;~θi

)
r

=

di∑
a=1

θira
xia (3)

where ~θi,r are learned weights. Other functional forms of φi
we have explored in our experiments include:

• A convolutional neural network that transforms a text se-
quence into an r-dimensional embedding. This function
is able to preserve information in the order of a text se-
quence, unlike other methods for transforming text to nu-
merical values such as bag-of-words.

• A deep, fully connected neural network that projects a
scalar, such as average rating, into an r-dimensional em-
bedding space. This extraction function, by treating the
input as numerical instead of categorical, requires inputs
close in value (e.g. 4.01 and 4.02 star rating) to have sim-
ilar embeddings.

Any neural function that outputs an r-dimensional vector
could be plugged into our framework as an extraction func-
tion φi. Although in this work we have only used datasets
with natural language, categorical and numerical features, it
would be straightforward to incorporate other types of data–
e.g. images or audio–with the appropriate feature extraction
functions, enabling the embedding of multi-modal features
in the same space.

Figure 1 compares existing factorization methods with
our novel model. Figure 1a shows a Factorization Ma-
chine (Rendle 2010) that embeds each feature. Figure 1b
shows Feat2Vec with two feature groups: the first group
only has a single feature which is projected to an embed-
ding (just like matrix factorization); but the second group
has multiple features, which are together projected to a
single embedding. Figure 1c shows an approach of us-
ing neural networks within factorization machines that has
been proposed multiple times (Dziugaite and Roy 2015;
Guo et al. 2017). It replaces the dot product of factors with
a learned neural function, which has been shown to improve
predictive accuracy. The caveat of this architecture is that
is no longer possible to interpret the embeddings as latent
factors related to the target task.

Our work in Feat2Vec significantly expands previously
published models. For example, Principal Component Anal-
ysis (PCA) is a common method to learn embeddings of in-
dividual dimensions of data. Although structured regulariza-
tion techniques exist (Jenatton, Obozinski, and Bach 2010),
it is not obvious how to combine different dimensions in
PCA when we are interested in treating a subset of dimen-
sions as a single group. In traditional factorization meth-
ods, item identifiers are embedded and thus need to be ob-
served during training (i.e., cold-start problem). Feat2Vec
can learn an embedding from an alternative characterization
of an item, such as a textual description. Feat2Vec extends
Factorization Machine (Rendle 2010), in that we allow cal-
culating embeddings for feature groups and we use feature
extraction functions. StarSpace (Wu et al. 2018) introduces
feature groups (called entities in their paper), but constrains
them to be “bags of features,” is supervised, and limited
to two feature types. In contrast, Feat2Vec allows contin-
uous features, and does not require the user to assign one
feature as a specific target. Additionally, we propose a self-
supervised learning algorithm.

2.2 Supervised Learning from Data
We can learn the the parameters of a Feat2Vec model ~θ by
minimizing a supervised loss function Lsup:

arg min
~θ

∑
~x∈X

Lsup
(
y(~x), ỹ(~x;φ, ~θ)

)
(4)

Here, X is the training dataset, y(~x) is the true target value
observed in the data for an observation ~x ∈ X, and ỹ(~x)

is its estimated value (using Equation 2); ~θ represents the
parameters learned during training (i.e. the parameters as-
sociated with the extraction functions φi). For labeling and
classification tasks, we optimize the logistic loss.

We can optimize Equation 4 directly using gradient de-
scent algorithms. Multi-class classification models can be
computationally costly to learn when the number of classes
is very high. In these cases, a common work-around is to re-
formulate the learning problem into a binary classifier with
implicit sampling (Dyer 2014): simply redefine the obser-
vation by appending the target label as one of the feature
groups of the observation (e.g., rating), while keeping the
other feature group(s) the same (e.g. review text). The new
implicit target label is a binary value that indicates whether
the observation exists in the training dataset.

In implicit sampling, instead of using all of the possible
negative labels, one samples a fixed number (k) from the
set of possible negative labels for each positively labelled
record. Implicit sampling is also useful for multi-label clas-
sification with a large number of labels, or when negative
examples are not easily available. We leverage on implicit
sampling for our self-supervised learning algorithm.

2.3 Self-Supervised Learning From Data
We now discuss how Feat2Vec can be used to learn embed-
dings in an self-supervised setting with no explicit target for
prediction.

The training dataset for a Feat2Vec model consists of the
observed data. In natural language, these would be docu-
ments written by humans, along with document metadata.
Since self-supervised Feat2Vec will require positive and
negative examples during training, we supply unobserved
data as negative examples. This sampling procedure is anal-
ogous to the Word2Vec algorithm, which samples a nega-
tive observation from a noise distribution Qw2v that is pro-
portional to the empirical frequency of a word in the train-
ing data. Unlike Word2Vec, we do not constrain features
types to be words. Instead, by leveraging the feature groups
of the data defined by ~κκκ (Equation 2), the model can rea-
son on more abstract entities in the data. For example, in our
experiments on a movie dataset, we define a “genre” fea-
ture group, where we group non-mutually exclusive indica-
tors for movie genres, including comedy, action, and drama
films.

We start with a training dataset X of records with n fea-
ture groups. We assign a positive label to each observation
in X. For each observed (positive) datapoint ~x+, we gen-
erate k observations with negative labels using the 2-step
algorithm documented in Algorithm 1. We illustrate the in-
tuition of this algorithm with an example. Consider a dataset

.
.

.

xk

.

.

.

xjxi xkxjxi xjxi xk

.

xkxjxi

(a) Factorization Machine

.
.

.

xk

.

.

.

xjxi xkxjxi xjxi xk

.

xkxjxi

(b) Feat2Vec

.
.

.

xk

.

.

.

xjxi xkxjxi xjxi xk

.

xkxjxi

(c) “Neural"

Figure 1: Network architectures for factorization models. The white clouds (�) represent deep layers, for example a convo-
lutional network for text features, while the dots (·) denote dot products.

with three feature groups—entities for (i) a passage of text
(bag of words), (ii) a restaurant identifier (categorical), and
a sentiment (a continuous value). The positive examples are
observations seen in the training set. Negative examples are
generated by modifying positive examples, specifically by
substituting one of the entities randomly from another ob-
servation. For example, by substituting the passage of text,
a negative example for the observation 〈Food was great., Le
Fancy Restaurant, 100〉 may result as 〈Ewww, gross!!!, Le
Fancy Restaurant, 100〉.

Algorithm 1 Implicit sampling algorithm for self-
supervised Feat2Vec

1: functionQ(~x+; k, α1, α2)
2: X− ← ∅
3: for j ∈ {1, . . . , k} do
4: Draw which feature group i ∼ Q1(φ, α1) to sample
5: Draw a random entity ~g ∼ Q2(Xκi , α2)
6: ~x− ← ~x+ . Set identical to the positive sample
7: ~x−κi

← ~g . substitute the i-th feature group with ~g
8: X− ← X− + {~x−} . append
9: end for

10: return X− . Sampled negative observations from ~x+

11: end function

More formally, our negative sampling algorithm generates
an observation with a negative label from an observation in
the training dataset as follows. First, it randomly selects the
i-th feature group from a noise distribution Q1(·). It then
creates a negative observation that is identical to ~x+, except
that its i-th feature group value is replaced by a value sam-
pled from a noise distribution Q2(·). In our application, we
use the same class of noise distributions (flattened multino-
mial) for both levels of sampling, but this need not be the
case. We now describe the noise distributions that we use.

Sampling Feature Groups. The function params calcu-
lates the complexity of a feature extraction function φi. To
sample a feature group, we choose a feature group i from
a multinomial distribution with probabilities proportional to
a feature group’s complexity. By complexity, we mean the
number of parameters we learn that are associated with a
feature group’s extraction function φi. This sampling proce-
dure places more weight on features that have more param-
eters and thus are going to require more training iterations
to properly learn. The sampling probabilities of each feature
group are:

PQ1
(i|φ, α1) =

params(φi)
α1∑|~κ|

j=1 params(φj)α1

(5)

For categorical variables using a linear fully-connected
layer, the complexity is simply proportional to the number
of categories in the feature group. However, if we have mul-
tiple intermediate layers for some feature extraction func-
tions (e.g., convolutional layers), these parameters should
also be counted towards a feature group’s complexity. The
hyper-parameter α1 ∈ [0, 1] flattens the distribution. When
α1 = 0, the feature groups are sampled uniformly, and when
α1 = 1, they are sampled exactly proportional to their com-
plexity.

Sampling Feature Group Values. To sample an en-
tity within a feature group i, we use a similar strategy to
Word2Vec and use the empirical distribution of values:

PQ2
(~g|Xκi

, α2) =
count(~g)α2∑

~j∈Xκi

count(~j)α2

, α2 ∈ [0, 1] (6)

Here, count(~g) is the number of times an entity ~g of feature
group i appeared in the training dataset X . Thus, an entity
is sampled according to its empirical distribution—whether
it is a single word, a continuous number, or a passage of text.
Again, α2 is simply a flattening hyperparameter.

This method will sometimes by chance generate nega-
tively labeled samples that do exist in our sample of ob-
served records. The literature offers two solutions: in the
Negative Sampling of Word2Vec, duplicate negative sam-
ples are ignored (Dyer 2014). Instead, we account for the
probability of random negative labels being identical to
positively labeled data using Noise Contrastive Estimation
(NCE) (Gutmann and Hyvärinen 2010).

The Loss Function for Self-Supervised Learning For
our self-supervised learning of embeddings, we optimize a
NCE loss function. We need to make sure that our loss func-
tion is well-behaved distribution that integrates to 1. This
often requires a partition function Z~x for each unique record
type ~x, which can be computationally costly and greatly in-
crease the complexity of our model. Instead, we appeal to
the work of Mnih and Teh (2012), who show that in mod-
els with many parameters setting Z~x = 1 in advance does
not change the performance of the model. The intuition is
that if the underlying model has enough free parameters, it

will effectively learn the probabilities itself, since systemic
under/over prediction of probabilities will result in penalties
on the loss function.

For self-supervised learning, we adjust the structural sta-
tistical model of Equation 2 to account for the probability
of negative examples, as in (Dyer 2014). Written explicitly,
this is:

p̃(y = 1|~x, ~φ, ~θ) =
exp
(
ỹ(~x|~φ, ~θ)

)
exp(ỹ

(
~x, ~φ, ~θ)

)
+ k × PQ(~x|α1, α2)

, ŝ(~x; ~θ) (7)

For notational convenience, we refer to this structural prob-
ability as ŝ(~x; ~θ). Here, ỹ(.) denotes the model in Equation
2 with ω set to the identity function. This can be interpeted
as the “score” of an observation with respect to Feat2Vec.
PQ(x) denotes the probability of x under noise distribution
Q; it accounts for the possibility of sampling an observation
with a negative label from Algorithm 1 that appears iden-
tical to one in the training data (with a positive label). The
probability of a negatively labeled record ~x, conditional on
a positive datapoint ~x+, is simply given by:

PQ(~x|α1, α2,X, ~x
+) = PQ2

(~xκi |Xκi , α2)×
PQ1

(i|params(φi)}ni=1, α1) (8)

We seek to optimize the parameters ~θ of the feature ex-
traction functions ~φφφ:

arg min
~θ

∑
~x+∈X

Lself
(
~x

+
; ~θ
)

(9)

For this, we define our self-supervised loss Lself as:

−
∑
~x+∈X

(
log
(
ŝ(~x

+
; ~θ)
)

+
k∑

~x−∼Q(·|~x+)

log
(
1− ŝ(~x

−
; ~θ)
))

(10)

Note that the observations with positive labels come di-
rectly from the training data, and the observations with neg-
ative labels are sampled using Algorithm 1. With n feature
groups, the loss function of self-supervised Feat2Vec can be
shown to be a weighted average of the losses from n distinct
supervised Feat2Vec models,1 one for each feature group.
In other words, it optimizes n multi-label classifiers, where
each classifier is optimized for a different feature group. The
intuition is as follows. In Algorithm 1, we first sample a tar-
get feature group i according to PQ1

, and then add the loss
from a supervised Feat2Vec model for i to the total self-
supervised loss. Thus, PQ1

determines the weights the self-
supervised loss function assigns to each feature group.

3 Empirical Results
For all our experiments, we define a development set and
a single test set which is 10% of the dataset, and a part of
the development set is used for early stopping or validating
hyper-parameters.

1The proof can be found in supplementary material at
http://web.stanford.edu/~larmona/feat2vec/
supplemental_theorem.pdf

3.1 Supervised Embeddings
To evaluate our supervised learning model, we com-
pare against two baselines: (i) a method called Deep-
CoNN (Zheng, Noroozi, and Yu 2017),which is a deep net-
work specifically designed for incorporating text into recom-
mendation problems—reportedly, it is the state of the art for
predicting customer ratings when textual reviews are avail-
able; (ii) and with Matrix Factorization (Koren, Bell, and
Volinsky 2009), a commonly used baseline.

We use our own implementation of Matrix Factoriza-
tion, but we rely on DeepCoNN’s published results (at time
of writing, their implementation was not available). Fortu-
nately, DeepCoNN also compares on Matrix Factorization,
which makes interpretation of our results easier. To make
results comparable, the Feat2Vec experiments use the same
feature extraction reported by DeepCoNN (a convolutional
neural network architecture). Thus, we can rule out that dif-
ferences of performance are due to choices in feature extrac-
tion functions. Instead of tuning the hyper-parameters, we
follow previously published guidelines (Zhang and Wallace
2017).

We evaluate on the Yelp dataset2, which consists of 4.7
million reviews of restaurants. For each user-item pair,
DeepCoNN concatenates the text from all reviews for that
item and all reviews by that user. The concatenated text is
fed into a feature extraction function followed by a factor-
ization machine. For Feat2Vec, we build 3 feature groups:
item (restaurant) identifiers, user identifiers, and review text.

Table 1 summarizes our results. We use mean squared
error (MSE) as the evaluation metric. Feat2Vec provides
a large performance increase. Additionally, we claim that
our approach is more general, because it can trivially be ex-
tended to incorporate more features. It is also more efficient:
DeepCoNN relies on concatenating text, and when the aver-
age reviews per user is n̄u and the average reviews per item
is n̄i, this results in text duplicated on average n̄i× n̄u times
per training epoch. In contrast, for Feat2Vec each review is
seen only once per epoch. Thus Feat2Vec, can be 1-2 orders
of magnitude more efficient for datasets where n̄i × n̄u is
large. Note also that Matrix Factorization cannot predict rat-
ings for restaurants or users that have not been during train-
ing, whereas our model and DeepCoNN avoid the cold-start
problem since they use the review text.

Table 1: Supervised Yelp rating prediction

MSE Improvement over MF

Feat2Vec 0.480 69.2 %
DeepCoNN 1.441 19.6 %
MF (Matrix 1.561 -
Factorization)

3.2 Self-Supervised Embeddings
The prediction of similar or related words is a commonly
used method for evaluating self-supervised word embed-

2https://www.yelp.com/dataset/challenge

dings (Bojanowski et al. 2017; Mikolov et al. 2013a). We
generalize this task for feature types beyond text as follows.
Given a dataset with n feature groups we have trained a self-
supervised Feat2Vec model on, we choose a single group i
as the “target” and a group j as the predictor. Given a held-
out instance ~x, we rank all possible values of the target group
in Xκi

by cosine similarity to the source group’s embedding
φj(~x~κj

) for that instance. We then retrieve the ranking of the
actual target entity in the test dataset relative to cosine simi-
larity scores for all other possible entities in ~κi. Rankings are
evaluated according to their mean percentile rank (MPR):
MPR = 1

N

∑N
i=1Ri/(maxiRi), where Ri is the rank of

the entity for observation i under our evaluation procedure,
and maxiRi is the worst ranking that can be received. A
score of 0 would indicate perfect performance (i.e. top rank
every test sample given), so lower is better under this metric.

Under this evaluation, we will compare the performance
of Feat2Vec algorithm to Word2Vec’s CBOW algorithm for
learning embeddings. During training, CBOW uses a “con-
text window” of nearby words to predict a target word, so
there is a natural way to apply embeddings learned from
CBOW to our ranking task (aggregate context embeddings
in the left-out instance’s source group to predict the tar-
get group). To create a corpus for training Word2Vec, each
record in the data is treated as a separate document. Specif-
ically, we tokenize all feature values in a record and treat
them as words (e.g. a movie record flagged as belonging to
the horror genre has the token genre_horror in its docu-
ment). We set the Word2Vec context window wide enough
so that training is invariant to the token order. We use hyper-
parameters α2 = .75 and k = 5 from (Mikolov et al. 2013b)
and set the embeddings dimension to r = 50. These hyper-
parameters are used in each of our embedding models during
evaluation. The novel feature group weighting parameter in
Feat2Vec was set to α1 = 0.25 in order to highlight the
differences with Word2Vec, since α1 = 1 corresponds to
all feature groups being sampled equally. This parameter α1

was not tuned further.
We evaluate self-supervised Feat2Vec on 3 datasets:

• Movies The Internet Movie Database (IMDB) is a pub-
licly available dataset3 of information related to films,
television programs and video games. We limit our exper-
iments to data on its 465,136 movies. Table 2 summarizes
our feature groups. For groups with multiple categories,
we use a “Bag of categories” approach. For example, we
sum embeddings of individual actors such as Tom Cruise
to produce a single “actor” feature group embedding as-
sociated with a movie.

• Education We use a dataset from a leading technology
company that provides educational services. In this pro-
prietary dataset, we have 57 million observations and 9
categorical feature types which include textbook identi-
fier, user identifier, school identifier, along with other pro-
prietary features. Each observation is an interaction a user
had with a textbook.

• Yelp We use the Yelp dataset from our supervised exper-

3http://www.imdb.com/interfaces/

Table 2: IMDB Feature Groups

Feature Type Name Type # of features

Runtime (minutes) Real-valued 1
IMDB rating (0-10) Real-valued 1
of rating votes Real-valued 1
Is adult film? Boolean 2
Movie release year Categorical 271
Movie title Text 165,471
Directors Bag of categories 174,382
Genres Bag of categories 28
Writers Bag of categories 244,241
Principal actors Bag of categories 1,104,280

iments to evaluate the efficacy of self-supervised embed-
dings in ratings prediction. We train embeddings for the
following feature groups: user ID, restaurant ID, review
text, number of times a review is flagged as funny, and
0-5 star rating of the review.

Results After training IMDB embeddings, we use cast
members in a held out set of movies to predict the actual
director of the film. We rank directors by cosine similarity
of their embedding to the title’s cast member feature group
embedding. For the educational dataset, we directly retrieve
the most similar textbooks to the user embedding. Table
3 presents our evaluation results. Feat2Vec outperforms
CBOW in the MPR metric. Additionally, while CBOW pre-
dicts the actual director 1.26% of the times, Feat2Vec does
so 2.43% of the time, a 92% improvement in Top-1 Preci-
sion over CBOW.

Table 3: Mean percentile rank

Dataset Feat2Vec CBOW
IMDB 19.36% 24.15%
Educational 25.2% 29.2%

Self-Supervised Feat2Vec Performance with Continu-
ous Inputs We now focus on how well our estimated
self-supervised Feat2Vec model performs when predict-
ing a real-valued feature. We expect this task to highlight
Feat2Vec’s advantage over token-based embedding learn-
ing algorithms, such as Word2Vec. For IMDB ratings, we
use a 3-layer DNN extraction function that will require em-
beddings of numerically similar ratings to be close, while
Word2Vec will treat two numerically different ratings as
completely different entities. We evaluate the prediction of
IMDB ratings by choosing the rating embedding most sim-
ilar4 to the embedding of the movie’s director, and compute
the MSE of the predicted rating in the test dataset. Feat2Vec
scores an MSE of 6.6, while Word2Vec (CBOW) scores 9.3.

We also use the Yelp dataset, predicting the most similar
rating embedding to the review text embeddings produced
by Feat2Vec, Word2Vec (CBOW), and Doc2Vec (DM).
Doc2Vec is only used for the Yelp dataset because there is no

4As before, the metric is cosine similarity.

1 2 3 4 5

1
2
3
4
5

Tr
ue

 R
at

in
g

0.95 0.05 0.00 0.00 0.00

0.78 0.20 0.00 0.00 0.01

0.58 0.31 0.02 0.04 0.05

0.35 0.15 0.02 0.13 0.34

0.18 0.05 0.00 0.05 0.71

Feat2Vec

1 2 3 4 5
Predicted Rating

1
2
3
4
5

0.00 0.00 0.46 0.08 0.46

0.00 0.00 0.23 0.11 0.66

0.00 0.00 0.15 0.11 0.75

0.00 0.00 0.15 0.11 0.74

0.00 0.01 0.31 0.13 0.56

Doc2Vec

1 2 3 4 5

1
2
3
4
5

0.00 0.00 0.00 0.01 0.99

0.00 0.01 0.00 0.01 0.98

0.00 0.01 0.00 0.01 0.98

0.00 0.01 0.00 0.02 0.97

0.00 0.01 0.00 0.02 0.97

Word2Vec

0.0

0.2

0.4

0.6

0.8

1.0 Fraction of True Ratings

Figure 2: Confusion Matrices of Self-Supervised Yelp Rat-
ings Predictions

obvious “base document” in the IMDB dataset for Doc2Vec
to learn on, while in the Yelp dataset the review text is a nat-
ural candidate. For Word2Vec and Doc2Vec, the review text
embedding is the average of word embeddings, analogous to
the context vector used for learning in these algorithms. Fig-
ure 2 reports the confusion matrices for each model from this
experiment. Word2Vec is poor in its predictive power, pre-
dicting 5 stars for 97% of the test sample. Though Feat2Vec
and Doc2Vec yield comparable MSE (2.94 vs. 2.92, re-
spectively), Feat2Vec outperforms Doc2Vec by a substantial
margin in classification error rate (55% vs. 73%) and mean
absolute error (1.13 vs. 1.31). In general, Doc2Vec is unable
to identify low rating reviews: only 0.4% of Doc2vec pre-
dictions are ≤ 2 stars, despite this comprising 20% of the
data. In contrast, Feat2Vec is more diverse in its predictions,
and better able to identify extreme reviews.

4 Conclusion
Embeddings have proven useful in a wide variety of con-
texts, but they are typically built from datasets with a single
feature type as in the case of Word2Vec, or tuned for a sin-
gle prediction task as in the case of Factorization Machine.
We believe Feat2Vec is an important step towards general-
purpose embedding methods. It decouples feature extraction
from prediction for datasets with multiple feature types, it
can be self-supervised, and its embeddings are easily inter-
pretable.

In the supervised setting, Feat2Vec outperforms an algo-
rithm specifically designed for text—even when using the
same feature extraction function. In the self-supervised set-
ting, Feat2Vec exploits the structure of a dataset to learn em-
beddings in a more sensible way than existing methods. This
yields performance improvements in our ranking and predic-
tion tasks. To the extent of our knowledge, self-supervised
Feat2Vec is the first method to calculate continuous rep-
resentations of data with multi-modal feature types and no
explicit labels.

Future work could study how to reduce the amount of hu-
man knowledge our approach requires; for example by auto-
matically grouping features into entities, or by automatically
choosing a feature extraction function. These ideas can ex-
tend to our codebase that we make available5. Though fur-

5The Feat2Vec model code is available here: https://
github.com/CheggEng/Feat2Vec. The experiments us-
ing non-proprietary data are available here: http://web.

ther experimentation is necessary, we believe that our results
are an encouraging step forward towards general-purpose
embedding models.

References
Bojanowski, P.; Grave, E.; Joulin, A.; and Mikolov, T. 2017. En-
riching word vectors with subword information. Transactions of
the Association for Computational Linguistics 5:135–146.
Dyer, C. 2014. Notes on noise contrastive estimation and negative
sampling. arXiv preprint arXiv:1410.8251.
Dziugaite, G. K., and Roy, D. M. 2015. Neural network matrix
factorization. CoRR abs/1511.06443.
Guo, H.; TANG, R.; Ye, Y.; Li, Z.; and He, X. 2017. Deepfm: A
factorization-machine based neural network for ctr prediction. In
Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17, 1725–1731.
Gutmann, M., and Hyvärinen, A. 2010. Noise-contrastive estima-
tion: A new estimation principle for unnormalized statistical mod-
els. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics, 297–304.
Jenatton, R.; Obozinski, G.; and Bach, F. 2010. Structured sparse
principal component analysis. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics,
366–373.
Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix Factorization
Techniques for Recommender Systems. Computer 42(8):30–37.
Le, Q., and Mikolov, T. 2014. Distributed representations of sen-
tences and documents. In Proceedings of the 31st International
Conference on Machine Learning (ICML-14), 1188–1196.
Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013a. Efficient
estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781.
Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J.
2013b. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing
systems, 3111–3119.
Mnih, A., and Teh, Y. W. 2012. A fast and simple algorithm for
training neural probabilistic language models. In Proceedings of
the International Conference on Machine Learning.
Rendle, S. 2010. Factorization machines. In Proceedings of the
2010 IEEE International Conference on Data Mining, ICDM ’10,
995–1000. Washington, DC, USA: IEEE Computer Society.
Wu, L. Y.; Fisch, A.; Chopra, S.; Adams, K.; Bordes, A.; and We-
ston, J. 2018. Starspace: Embed all the things! In Thirty-Second
AAAI Conference on Artificial Intelligence.
Zhang, Y., and Wallace, B. 2017. A sensitivity analysis of (and
practitioners’ guide to) convolutional neural networks for sentence
classification. In Proceedings of the Eighth International Joint
Conference on Natural Language Processing (Volume 1: Long Pa-
pers), 253–263. Asian Federation of Natural Language Processing.
Zheng, L.; Noroozi, V.; and Yu, P. S. 2017. Joint deep modeling of
users and items using reviews for recommendation. In Proceedings
of the Tenth ACM International Conference on Web Search and
Data Mining, WSDM ’17, 425–434. New York, NY, USA: ACM.

stanford.edu/~larmona/feat2vec/.

