Towards Understanding Educational Technology

José Gonzalez-Brenes, Pearson
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EDUCATIONAL INTERVENTIONS

» Educational interventions have a cost (effort) to the learner, and a pay-

off (outcome)

* Human-propelled machine learning interventions are evaluated with

Randomized control trials ($$$) or with classification evaluation metrics

« For example: Adaptive tutoring systems minimize student practice, and

maximize their outcomes. Optimizing them independently is trivial
(E.g, don’t teach at all, or teach for 100 years each concept).

+ Adaptive tutoring systems are evaluated on how predictive they are on

future student performance
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Interventions with a Pareto Efficiency Perspective

Yun Huang, University of Pittsburgh

LEARNER EFFORT-OUTCOME PARADIGM (LEOPARD)

» Effort: how much practice the tutor gives to the student

* Outcome: how well does the student does after tutoring / Error: 1- Outcome
« White (Whole Intelligent Tutoring System Evaluation) metric that operationalizes Leopard. Drop-in replacement for
Area Under the Curve (AUC) of the Receiver Operating Characteristic (ROC) curve. Extends work from Lee &

Brunskill (2012)
» Problem? ill-specified models are not concave
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» Varying thresholds gives a Pareto

effort= Bob s1
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FOUR QUESTIONS YOU SHOULD ASK YOURSELF ABOUT THE VALIDITY OF YOUR EVALUATION
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Your model is accurate - but is it useful?
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We trained a “bad student model” with real student data with flat learning curves. The model

is very accurate, yet is not useful for adaptivity. Solutions:

« Report classification accuracy averaged over skills (for models with 1 skill per item)

® Not useful for comparing or discovering different skill models
» Report as “difficulty” baseline

score effort

A Suboptimal decisions?

Cognitive model AUC score effort

10.1 55.73

Coarse (27 skills) .69 .41

11.2 Fine (90 skills) 74 .36 88.16

The fine model gives 50% more of practice to
students - yet it has better AUC.

e Unstable results?

Yudelson and Ritter ‘2015 demonstrated that a
change of 0.01 RMSE can have a a HUGE change in

® Experiments suggest that models with baseline performance can be useful

» Use Leopard
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tutoring policies

What are you
measuring?

Simulations using synthetic data suggest that
classification evaluation metrics have low
correlation to what we typically would measure
with a RCT
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