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Main point of the paper: 
We are not evaluating student models 
correctly 
 
New paradigm, Leopard, may help 
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Why are we here? 
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Educational Data Mining 
 
 

Data Mining 

=	
  
? 
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Should we just publish at KDD*? 
 

*or other data mining venue 
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Claim:  
Educational Data Mining helps learners 
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Is our research helping learners? 



Adaptive Intelligent Tutoring Systems: 
Systems that teach and adapt content to 
humans 

teach	
  

collect	
  evidence	
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Paper writing: Researchers quantify the 
improvements of the systems compared 
 
Not a purely academic pursuit: 
Superintendents to choose between 
alternative technology 
 
Teachers choose between systems 
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Randomized Controlled Trials may measure 
the time students spent on tutoring, and 
their performance on post-tests 
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Difficulties of Randomized Controlled Trials: 
•  IRB approval 
•  experimental design by an expert 
•  recruiting (and often payment!) of enough 

participants to achieve statistical power 
•  data analysis 
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How do other A.I. disciplines do it? 
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Bleu [Papineni et al ‘01]:   
machine translation systems 
 
 
Rouge [Lin et al ’02]:  
automatic summarization systems 
 
 
Paradise [Walker et al ’99]:  
spoken dialogue systems 
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Using automatic metrics can be very 
positive: 
 
•  Cheaper experimentation 
•  Faster comparisons 
•  Competitions that accelerate progress 
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Automatic metrics do not replace RCTs 
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What does the Educational Data Mining 
community do? 
 
Evaluate the student model using 
classification accuracy metrics like RMSE, 
AUC of ROC, accuracy… 
(Literature reviews by Pardos, Pelánek, … ) 
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Other fields verify that automatic metrics 
correlated with the target behavior  
 
[Eg.: Callison-Burch et al ’06] 
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Ironically, we have a growing body of 
evidence that classification evaluation 
metrics are a BAD way to evaluate adaptive 
tutors 

Read Baker and Beck papers on limitations / 
problems of these evaluation metrics 
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Surprisingly, in spite of all of the evidence 
against using classification evaluation 
metrics, their use is still very widespread in 
the adaptive literature* 
 
Can we do better? 
 
* ExpOppNeed [Lee & Brunskill] is an exception 
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The rest of this talk: 
•  Leopard Paradigm 

– Teal 
– White 

•  Meta-evaluation 
•  Discussion 
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Leopard 
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•  Leopard: Learner Effort-Outcomes 
Paradigm 

•  Leopard quantifies the effort and 
outcomes of students in adaptive tutoring 
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•  Effort: Quantifies how much practice the 
adaptive tutor gives to students. Eg., 
number of items assigned to students, 
amount of time… 

•  Outcome: Quantifies the performance of 
students after adaptive tutoring 
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•  Measuring effort and outcomes is not 
novel by itself (e.g, RCT) 

•  Leopard’s contribution is measuring both 
without a randomized control trial 

•  White and Teal are metrics that 
operationalize Leopard 
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White: Whole Intelligent Tutoring system 
Evaluation 
 
White performs a counterfactual simulation 
(“What Would the Tutor Do?”) to estimate 
how much practice students receive 
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Design desiderata: 
 
Evaluation metric should be easy to use 
 
Same, or similar input than conventional 
metrics 
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Alternatively, 
we can 

model error 



Future direction:  
Present aggregate results 
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Q/ What if student does not achieve target 
performance?  
 
A: “Visible” imputation 
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Meta-Evaluation 
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Compare: 
•  Conventional classification metrics 
•  Leopard metrics (White) 
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Datasets: 
•  Data from a middle-school Math commercial 

tutor  
–  1.2 million observations 
–  25,000 students 
–  Item to skill mapping: 

•  Coarse: 27 skills 
•  Fine: 90 skills 
•  (Other item-to-skill model not reported) 

•  Synthetic data 
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Assessing an evaluation metric with real 
student data is difficult because we often do 
not know the ground truth 
 
Insight: Use data that we know a priori its 
behavior in an adaptive tutor 
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For adaptive tutoring to be able to optimize 
when to stop instruction, the student 
performance should increase with repeated 
practice (the learning curve should be 
increasing) 
 
Decreasing /flat learning curve = bad data 
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Procedure: 
1.  Select skills with decreasing/flat learning 

curve (aka bad data) 
2.  Train a student model on those skills 
3.  Compare classification metrics with 

Leopard 
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F1 AUC Score Effort 
Bad student model .79 .85 
Majority class 0 .50 
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F1 AUC Score Effort 
Bad student model .79 .85 .18 10.1 
Majority class 0 .50 .18 11.2 
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What does this mean? 
•  High accuracy models may not be useful 

for adaptive tutoring 
•  We need to change how we report results 

in adaptive tutoring 
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Solutions 
•  Report classification accuracy averaged 

over skills (for models with 1 skill per item) 
✖ Not useful for comparing or discovering 
different skill models 

•  Report as “difficulty” baseline 
✖ Experiments suggest that models with 
baseline performance can be useful 

•  Use Leopard 

44 



Let’s use all data, and pick an item-to-skill 
mapping: 

AUC Score Effort 
Coarse (27 skills) .69 
Fine (90 skills) .74 
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Let’s use all data, and pick an item-to-skill 
mapping: 

AUC Score Effort 
Coarse (27 skills) .69 .41	
   55.7	
  
Fine (90 skills) .74 .36	
   88.1	
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With synthetic data we can use Teal as the 
ground truth 
 
We generate 500 synthetic datasets with 
known Knowledge Tracing Parameters 
 
Which metrics correlate best to the truth? 
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Discussion 
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In EDM 2014 we 
proposed “FAST” toolkit 
for Knowledge Tracing 
with Features 



 
 
“FAST model improves 25% AUC of ROC” 
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Input 

Teal White 
Knowledge Tracing 
Family parameters 

Student’s correct or 
incorrect response 

Sequence length Student models’ 
prediction of correct/
incorrect 

Target Probability of 
correct 

Target Probability of 
correct 
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